2010. február 28., vasárnap

Tapes arc, helic arc and subhelic arc observed in Austria

Last January, 27 th, I managed to get one of my best halodisplays during my long observation period of halos - I have observed these phaenomena more than 15 years already.

On my way home from work I observed 14 different haloforms within 1 and a half hour (14:15 - 15:45 CET). It started with a bright circumzenith arc, sundogs and a clearely vertically elongated left hand side 120° parhelion on a short parhelic circle. Later the 120° parhelion on the right hand side appeared. The highlight (about 15:15 CET) was the observation of the CZA, supralateral arc, 46° halo, suncave and sunvex Parry arcs, upper tangent arc, 22° halo with sundogs, Tape arc, helic arc, subhelic arc and a little bit later a small part of the left infralateral arc.

I run a simulation with Halosim from L. Cowley and M. Schroeder that shows the halos I have observed near the sun quite good. A report and many images can be seen by clicking the image above. I invite you to take a look at the site.

Karl Kaiser

2010. február 25., csütörtök

Peculiar 23° plate arc with an elliptical halo


The morning of 24th February at Riihimäki started with a solitary patch of supralateral arc ( 1 ) which was seen in a passing cloud and lasted for only a few minutes. Later on during the day a clearly elliptical glow could be seen in the vicinity of the Sun, and suddenly the glow started to have a defined shape: an elliptical halo. During the 2-3 minutes it took to gather photo gear and go back out was enough to lose the ring; the glow is all that can be seen in the 30 frame stack ( 2 ).

While the ellipse-stack was ongoing my attention was caught by two odd visitors: 23° upper plate arc and circumzenith arc. Immediately after change of lens the camera was grabbing images of that strange sight, see a 30 frame stack ( 3 ) and a 120 frame stack (taken with 3 second intervals, so total duration was about 6 minutes) ( 4 ).

The elliptical glow remained and sometimes seemed to have a true halo at its outer edge. The last two shots ( 5 - 6 ) show perhaps some kind of an ellipse, but it is hard to be confident since due to severe rush the images are not perfectly exposed and the 12bit sensor data is clearly in trouble because of the strong intensity gradient. Furthermore, the horrible dust of the lens spoils the images completely. Digital image processing methods, such as levels- and curves -adjustment and unsharp mask filter, are merciless regarding the cleanliness of the optical surfaces. Apologies for that.

During the ellipse - 23° plate arc - CZA -phase the sky was blue and snowflakes were floating down. The wind was not hard, but clearly noticeable and temperature in the ground was about -13°C. The halos seemed to be formed in an AC virga -type of "cloud", but the origin of the virga remained a mystery - there were no clouds seeding it. It is impossible to say whether the ellipse and the other halos were formed by the same cloud material or not. Some of the snowflakes were studied under microscope, but nothing peculiar was seen, just plain snowflakes.

On the 22nd of February Eetu Saarti managed to shoot a lunar elliptical halo in Tampere, whose duration was less than 30 seconds(!) ( 7 ).

2010. február 11., csütörtök

Divergent light 22° halo on snow surface

The photo here shows divergent light 22° halo on snow surface in Eastern Siberia in January 1996. In airborne crystals divergent light 22° halo is a cigar-shaped surface, sometimes known as Minnaert's cigar, while on snow surface a slice of this cigar is seen. The illustration - made by Walt Tape - shows how the effect is formed. Lamp is on the right, observer on the left and in between is the cigar shaped 22° halo. The gray plane is snow surface and the red circle is the 22° halo on it. More images and illustrations are on my web site ( 1 ).

Marko Riikonen

2010. január 30., szombat

A complex halo display on car windshield



Photos and videos of the windshield halos seen on the night of 26/27 January in Tampere are now available in two galleries ( 1 - 2 ). The display was dominated by plate and Parry oriented halos. Circumzenith and circumhorizon arcs were strong as were the upper and lower suncave Parry arcs. Parhelic circle and 120° parhelia were also well developed. Less conspicuous were the subhelic arc ( 3 ), upper sunvex Parry, 46° Parry and the blue spot. Additionally, two unidentified features were seen.

We did not photograph the crystals, but we think the display was formed in frost crystals that have their basal or prism faces parallel to the windscreen. Both populations could be separate crystals, but also 90 degree crossed crystals could be a consideration. Visually the frost seemed rather grainy, which suggests compound crystals.

The halos were observed with a LED lamp pointed through the windshield as well as with reflected light (the lamp on the same side of the windshield as the observer). By moving the lamp we were able to observe in real time the transformations in halos that occur as the light source elevation changes (4). Videos show the shift between circumzenith and circumhorizon arc. There are also peculiarities. One is that the parhelia does not seem to move much further from 22 halo as the lamp elevation rises.

Both two unidentified features were documented. The other one was found from the video: in the video, far below parhelic circle at around 120 azimuth, appears a vertical pillar (5). The other effect was a diffuse arc that was seen when we lit up the windscreen from the front of the car and watched it from behind the lamp. This elusive effect was documented in a video (6).

After hours of documenting we ended the night by taking a ride and videoed the halos as they swept the windshield. As we neared a streetlamp, first one to sweep the screen upwards was the lower suncave Parry followed by circumhorizon arc. Then, as the lamp was overhead and behind, parhelic circle swept the screen downwards. If the lamps were a bit further on the side relative to our driving line, then also 120 parhelion was seen on parhelic circle.

It was a great night. In those six hours that we spent worshipping this complex display, we learned all the time more on what we were seeing and created new tricks to take photos. Certainly this winter’s top halo experience for both of us.

Marko Riikonen, Jari Luomanen

2010. január 29., péntek

Possible explanation of Moilanen Arc

I would like to present a possible explanation for the Moilanen arc. I have read about the existence of this unexplained arc a few weeks ago and tried to figure out possible explanations. After getting the reflected lower sunvex parry and some pyramidal arcs that were also looking like the Moilanen arc, I think I finally have a crystal that makes a very good candidate for the explanation of Moilanen arc.

Responsible crystal
The responsible crystal would be a crystal made of a two hexagonal usual hexagonal crystals stuck together. The simplest configuration would be the one of a plate crystal (called the main plate) with another plate or a column stuck on one of its base (called the stuck crystal).
Figure 1.

Condition of creation of Moilanen arc
The conditions for the creation of a Moilanen arc from this configuration are the following:

1: The main plate must be horizontal

2: The stuck crystal is on the inferior base of the plate

3: The bases of the stuck crystal must be perpendicular to two side faces of the main plate

1 and 2: this configuration is aerodynamically stable when stuck crystal is centered on the inferior base plate. To figure this, one can think of a paratrooper, the parachute being the plate crystal and stuck plate or column being the charge. So naturally the main plate will rotate so the stuck crystal is on the inferior base. Now why would the stuck crystal be centered on the main plate? I think that for this stuck crystal configuration to happen, the crystal density must be very high. So in the case of crystal swarms created by snow machine, the crystals would be stuck when they are small, just after their creation. So the growth of the crystal, will happen after. The growth being isotropic, the stuck crystal will naturally be centered on the main crystal. And the aerodynamically stable condition is the main plate being horizontal with stuck crystal on the inferior base.

3: I have to admit that the perpendicularity of the bases of the stuck crystal and two sides of the main plate is the most challenging point. My best explanation on this is that as the two components are crystals, there are definitely orientations of stucking that will be more stable. I hope that crystal experts will be able to help on this point to validate that this orientation is more likely to happen than any other. Crystal samples obtained during the display of 14th of December 2009 by Mika Aho, Ágnes Kiricsi and Marko Riikonen show some crystal looking very much alike the one described in the proposed explanation
Figure 2 and 3.

Ray path responsible of Moilanen arc
The ray path responsible of the Moilanen arc is the rays entering a vertical side face of the main plate and exiting the upper lateral side face of the stuck crystal. The prism angle in this configuration is 30° but with the entrance face vertical.
Figure 4.

Usually associated halos
This configuration of crystal is so still capable of producing all the plate arcs (parhelia, parhelic circle, circumzenithal arc, pillars, etc…) and also the Parry arcs (sunvex through the stuck crystal and suncave through the upper base of the plate and the stuck crystal. So this configuration seems to be well compatible with the halos usually observed with the Moilanen arc.

Spurious arcs
I have been able to check it thoroughly but there does not seem to be any spurious arcs from this configuration. Spurious arcs would be created by rays entering side faces of the main plate and side faces of the stuck crystal. I will try to check it, but for the most simple other rays, it does not seem to exist direct ray path, at least if the stuck crystal is a regular hexagonal crystal.

Other rays would just create already known halos. Rays entering by the base of main plate and exiting by the sides of stuck crystal would create parry arcs, and by the base of main plate and exiting by the base of stuck crystal would create circumzenithal and supralateral arcs.

Distance from the sun
The distance between the apex of the Moilanen arc and the sun can be easily calculated using the 30° prism with vertical entrance face description. At low sun elevation, the distance is about 11°. It increases slowly to 13° at 10° solar elevation, 15° at 15° solar elevation, 18° at 20° solar elevation. As the sun elevation increases, the rays path becomes less likely because of the stucking area and also of the increased incidence on the exit face. The total internal reflection condition is met when the solar elevation is higher than 26°. This is in agreement with the fact that Moilanen arc are usually observed at low sun elevations.
Figure 5.

Shape evolution
I have made a simple ray tracing program to simulate the Moilanen arc shape. This simulation tool does not take into account the real crystal shape, only the relative orientation of the faces. The shape are represented for 0°, 3°, 6°, 9°, 12°, 15° and 18° solar elevation. The simulated shape matches very well the photographs of the arc, with a reduced curvature at higher solar elevation. The simulation shows the arc being more extended on the sides as I don’t take into account the real 3D shape of the crystal, but just the relative face orientation.
Figures 6, 7, 8.

Conclusion
The proposed explanation is based on a 30° prism which entrance face is vertical. In this explanation, the responsible is a horizontal plate on which is stuck a plate or column crystal. I think this type of crystal explains very well most (if not all) of the observed properties of Moilanen arc. More simulations to check that no spurious arcs arc created would help confirm this, as well as some insights of crystals experts on the probability of getting such configuration.

Nicolas Lefaudeux, January 29th 2010

2010. január 28., csütörtök

Display from Poland

On 15 January Marcin Matusinski from Poland observed one of the best Polish halo displays. It was visible on a ski slope on the Male Skrzyczne Mountain in the Beskidy Mountains (elevation about 950 m). The crystals originated from the snowguns. The display lasted almost the whole day. The conditions were unstable but they were the best about 10:20 a.m. when the Sun altitude was 13,5 degrees. In the morning the Moilanen arc could be observed ( 1 ). Later, in addition to the more usual phenomena, there were parhelic circle, Parry arc and infralateral arc ( 2 - 3 ). The most interesting was the anthelic with Tricker and diffuse arcs ( 4 ).

Jakub Marchewka

2010. január 27., szerda

Parry and helic arc

The photo of this display is from László Dubek. It was shot on 28 December 2008 in the skiing cente of St. Corona, Austria. For further photos of the display, you can visit László's gallery. ( 1 )